
Active Learning of Markov Decision Processes
using Baum-Welch algorithm (Extended)

Giovanni Bacci
Dept. of Computer Science

Aalborg, Denmark
Email: giovbacci@cs.aau.dk

Anna Ingólfsdóttir
Dept. of Computer Science

Reykjavík, Iceland
Email: annai@ru.is

Kim G. Larsen
Dept. of Computer Science

Aalborg, Denmark
Email: kgl@cs.aau.dk

Raphaël Reynouard
Dept. of Computer Science

Reykjavík, Iceland
Email: raphal20@ru.is

Abstract—Cyber-physical systems (CPSs) are naturally mod-
elled as reactive systems with nondeterministic and probabilistic
dynamics. Model-based verification techniques have proved ef-
fective in the deployment of safety-critical CPSs. Central for a
successful application of such techniques is the construction of
an accurate formal model for the system. Manual construction
can be a resource-demanding and error-prone process, thus mo-
tivating the design of automata learning algorithms to synthesise
a system model from observed system behaviours.

This paper revisits and adapts the classic Baum-Welch al-
gorithm for learning Markov decision processes and Markov
chains. For the case of MDPs, which typically demand more
observations, we present a model-based active learning sampling
strategy that choses examples which are most informative w.r.t.
the current model hypothesis. We empirically compare our
approach with state-of-the-art tools and demonstrate that the
proposed active learning procedure can significantly reduce the
number of observations required to obtain accurate models.

Index Terms—Baum-Welch algorithm, Markov decision pro-
cesses, active learning

I. INTRODUCTION

Model-based verification techniques have proved effective
in the deployment of safety-critical cyber-physical systems.
Due to their interactions with a physical environment, CPSs
are naturally modelled as reactive systems with nondetermin-
istic and probabilistic dynamics. A popular formalism for such
systems are discrete-time Markov decision processes (MDPs).

Quantitative verification techniques like probabilistic model
checking can provide strategies that are provably optimal with
respect to the probability of satisfaction of some requirements
expressed as LTL or PCTL formulae. Model checking tools
such as PRISM [1], STORM [2], and UPPAAL-STRATEGO [3]
offer efficient methods for finite MDPs. These techniques
assume that the model is an accurate formalisation of the
true system. Thus, central for model-based verification is the
construction of accurate models.

Manual construction requires one to determine a big number
of model parameters which can be a resource-demanding and
error-prone process. This motivated the design of automata
learning algorithms able to synthesise Markov chains [4],
[5] and deterministic Markov decision processes [6]–[9] from

R. Reynouard and A. Ingólfsdóttir have been supported by the project
Learning and Applying Probabilistic Systems (nr. 206574-051) of the Icelandic
Research Fund. K.G. Larsen has been supported by the ERC Advanced Grant
LASSO (nr. 669844), and the Innovation Fund Denmark center DiCyPS.

observed system behaviours. These algorithms, in the large
sample limit, identify the original (canonical) model. However,
for practical applications, the available data is often limited,
as the generation of a large number of observations can
be a resource-demanding task. Additionally, there might be
requirements on the size of the learned model, e.g., when the
model has to be stored in an embedded system.

The Baum-Welch algorithm [10] is an expectation max-
imisation technique [11] for learning model parameters of
a hidden Markov model. This algorithm has recently been
applied in model-based statistical verification of CPSs [12],
model checking of interval Markov chains [13], and metric-
based approximate minimisation of Markov chains [14].

This paper proposes a variant of the Baum-Welch algorithm
that learns model parameters for Markov chains and Markov
decision processes from observed systems behaviours. As the
original algorithm, it starts from a given model hypothesis
and iteratively updates its transition probabilities until the
likelihood of the data stops improving more than a suitably
small 𝜖 . The algorithm can be combined with other learning
techniques like ALERGIA [4] and IOALERGIA [6]–[8] for the
choice of the initial hypothesis. Notably, by fixing a suitably
small initial hypothesis, the algorithm can also be used to
construct succinct, yet accurate, approximations of complex
systems. This characteristic is particularly useful when one
needs to control the size of the learned model e.g., to store it
into an embedded system.

Empirical comparisons with state-of-the-art tools show that
the Baum-Welch algorithm for MDPs can achieve a better ratio
of accuracy to the size of the model. However, when the size of
initial hypothesis model is bigger than that of the system under
learning it is not uncommon for the Baum-Welch algorithm to
overfit the observation set.

Learning MDPs typically requires more observations as the
number of model parameters grows with the number of non-
deterministic actions. To address this issue, we employ active
learning. Rather than collecting data samples at random, we
steer the sampling of new observations aiming at uncovering
unobserved behaviours, thus improving the accuracy of the
current model hypothesis. In this line, we propose to learn
an initial hypothesis from a relatively small set of system
observations sampled at random. Then, for each hidden state
we compute the expected number of times each action has

ar
X

iv
:2

11
0.

03
01

4v
1

 [
cs

.L
G

]
 6

 O
ct

 2
02

1

been chosen from that state. This information is used to devise
an observation-based scheduler aimed at restoring balance in
the count of actions performed from each hidden state. This
helps the collected data set to represent a wider spectrum of
the nondeterministic behaviours of the systems under learning.

Experiments show that our active learning procedure can
significantly reduce the number of observations required to
obtain accurate models, achieving a faster convergence rate
than that observed when employing uniform schedulers.

Other Related Work: An influential active automata learn-
ing technique is Angluin’s 𝐿∗-algorithm [15] for learning
regular languages, which inspired a number of extensions
better suited for modelling reactive systems [16]–[18]. In this
line of research, Tappler et al. [9] proposed an 𝐿∗-based
technique for learning (deterministic) MDPs. The method iter-
atively refines the current hypothesis until the teacher cannot
provide a counterexample sequence. For each refinement step a
predefined amount of new observations is collected. In contrast
to our proposal, new sequences are sampled targeting a subset
of states that are marked as rare.

Other related work include model-based learning techniques
for partially observable MDPs (e.g., [?]). These techniques
aim at learning how to act in an unknown partially observable
domain taking actions based on an approximate model of the
domain. Typically, they learn only a portion of the real model
that is sufficient to optimise the strategy, leaving unnecessary
parts of the system unexplored. In contrast, we aim at learning
the whole model and be able to analyse it.

II. PRELIMINARIES AND NOTATION

We denote by R, Q, and N respectively the sets of real,
rational, and natural numbers. We denote by Σ𝑛, Σ∗ and, Σ𝜔

respectively the set of words of length 𝑛 ∈ N, finite length,
and infinite length, built over the finite alphabet Σ.

We denote by D(Ω) the set of discrete probability distribu-
tions on Ω For 𝑥 ∈ Ω, the Dirac distribution concentrated at
𝑥 is the distribution 1𝑥 ∈ D(Ω) defined, for arbitrary 𝑦 ∈ Ω,
as 1𝑥 (𝑦) = 1 if 𝑥 = 𝑦, 0 otherwise.

A. Markov decision processes and schedulers

Definition 2.1: A discrete-time Markov decision process is
a tuple, M = 〈𝑆, 𝐿, 𝐴,], {𝜏𝑎}𝑎∈𝐴〉, where (i) 𝑆 is a finite
nonempty set of states, (ii) 𝐿 is a finite nonempty set of labels,
(iii) 𝐴 is a finite nonempty set of actions, (iv)] ∈ D(𝐿 × 𝑆)
is an initial distribution, and (v) 𝜏𝑎 : 𝑆 → D(𝐿 × 𝑆) is a
probabilistic transition function.

Intuitively, M initially emits a label and probabilistically
moves to some state according to]. Then, if M is in state 𝑠

and receives an input action 𝑎 ∈ 𝐴, it emits a label ℓ ∈ 𝐿 and
moves to state 𝑠′ with probability 𝜏𝑎 (𝑠) (ℓ, 𝑠′). In this sense,
M can be thought of as a state-machine that reacts to a stream
of input actions 𝑎1, 𝑎2, · · · ∈ 𝐴𝜔 by emitting traces of labels
of the form ℓ1, ℓ2, · · · ∈ 𝐿𝜔 .

Remark 2.1: We do not assume to know a priori which
actions are available from a given state 𝑠 of the model. Rather,
we assume the model to react with an error label, denoted

ℓ𝑒𝑟𝑟 ∈ 𝐿, and move back to 𝑠 with probability 1 whenever an
action 𝑎 ∈ 𝐴 which is not available is chosen from the current
state 𝑠. Formally, 𝑎 ∉ Available(𝑠) implies 𝜏𝑎 (𝑠) (ℓ𝑒𝑟𝑟 , 𝑠) = 1.

A path is an infinite sequence in Paths = (𝐿 × 𝑆 × 𝐴)𝜔
representing an execution of M. We denote by Pathsfin = (𝐿×
𝑆 × 𝐴)∗ (𝐿 × 𝑆) the set of finite paths. Analogously, we define
the set of infinite (resp. finite) observations as Obs = (𝐿×𝐴)𝜔
(resp. Obsfin = (𝐿×𝐴)∗𝐿). The length of a finite path 𝑤 (resp.
observation 𝑜), written |𝑤 | (resp. |𝑜 |), equals the number of
occurrences of labels in the sequence.

For 𝑖 ∈ N>0, we define 𝑋𝑖 : Paths → 𝑆, 𝑌𝑖 : Paths → 𝐿,
𝐴𝑖 : Paths → 𝐴, and 𝑂𝑖 : Paths → Obsfin respectively
as 𝑋𝑖 (𝜋) = 𝑠𝑖 , 𝑌𝑖 (𝜋) = ℓ𝑖 , 𝐴𝑖 (𝜋) = 𝑎𝑖 , and 𝑂𝑖 (𝜋) =

(ℓ1, 𝑎1) · · · (ℓ𝑖−1, 𝑎𝑖−1)ℓ𝑖 , where 𝜋 = (ℓ1, 𝑠1, 𝑎1) (ℓ2, 𝑠2, 𝑎2) · · · .
Following the classical cylinder set construction [19, Ch10],

we define the measurable space of paths (Paths,Σ) where
Σ = 𝜎({cyl(𝑤) | 𝑤 ∈ Pathsfin}) is the smallest 𝜎-algebra that
contains all the cylinder sets cyl(𝑤) = 𝑤(𝐴 × 𝑆 × 𝐿)𝜔 .

To define a probability measure for MDPs, we use sched-
ulers (a.k.a., policies or strategies) to resolve the nondetermin-
istic choices of actions that are taken at each step.

A scheduler is a function 𝜎 : Pathsfin → D(𝐴). Intuitively,
a scheduler determines a distribution of actions to take, based
on the history of the current path. This notion of sched-
uler encompasses well-studied classes of schedulers such as
memoryless, deterministic, and randomised (cf. [19]). In this
paper we distinguish between two types of schedulers, namely
model-based and observation-based schedulers. A model-
based scheduler chooses actions having complete knowledge
of the history. In contrast, an observation-based scheduler
performs the choice based only on observable features of the
history.

Definition 2.2: A scheduler 𝜎 is observation-based if for all
𝑤, 𝑤′ ∈ Pathsfin such that |𝑤 | = |𝑤′ |, 𝑂 (𝑤) = 𝑂 (𝑤′) implies
𝜎(𝑤) = 𝜎(𝑤′).

An MDP M and a scheduler 𝜎 induce a prob-
ability space (Paths,Σ, 𝑃𝑟M𝜎) where 𝑃𝑟M𝜎 denotes the
(unique) probability measure such that for arbitrary 𝑤 =

(ℓ1, 𝑠1, 𝑎1) · · · (ℓ𝑛−1, 𝑠𝑛−1, 𝑎𝑛−1) (ℓ𝑛, 𝑠𝑛) ∈ Pathsfin,

𝑃𝑟N𝜎 (cyl(𝑤)) =](ℓ1, 𝑠1) ·
∏𝑛−1

𝑖=1 𝜎(𝑤𝑖) (𝑎𝑖) · 𝜏𝑎𝑖 (𝑠𝑖) (ℓ𝑖+1, 𝑠𝑖+1),

where 𝑤𝑖 = (ℓ1, 𝑠1, 𝑎1) · · · (ℓ𝑖−1, 𝑠𝑖−1, 𝑎𝑖−1) (ℓ𝑖 , 𝑠𝑖) is the 𝑖-th
prefix of 𝑤.

III. LEARNING MPDS USING BAUM-WELCH ALGORITHM

In this section we present a variant of the Baum-Welch
algorithm [10] for learning an MDP M from a finite set of
observation sequences O ⊆ Obsfin.

As the Baum-Welch algorithm, also our method is a max-
imum likelihood approach: the transitions probabilities of M
are estimated to maximise the likelihood

𝐿 (M, 𝑜) = 𝑃𝑟M [𝑌1:𝑇 = ℓ1 . . ℓ𝑇 |𝐴1:𝑇 −1 = 𝑎1 . . 𝑎𝑇 −1]

of an observed sequence 𝑜 = (ℓ1, 𝑎1) · · · (ℓ𝑇 −1, 𝑎𝑇 −1)ℓ𝑇 . The
maximum likelihood problem is solved using the expectation
maximisation approach [11]. In this line, our algorithm starts

MDP-BW(O,H0)
1 𝑖 = 0
2 repeat
3 (𝛼, 𝛽) = FORWARD-BACKWARD(H𝑖 ,O)
4 H𝑖+1 = UPDATE(H𝑖 ,O, 𝛼, 𝛽)
5 𝑖 = 𝑖 + 1
6 until 𝐿 (H𝑖 ,O) − 𝐿 (H𝑖−1,O) ≤ 𝜖

7 return H𝑖

Fig. 1. Baum-Welch algorithm for MPDs

with an initial model hypothesis H0 which is iteratively
updated in a way that the likelihood is nondecreasing at each
step, that is 𝐿 (H𝑛) ≤ 𝐿 (H𝑛+1), until the likelihood difference
between the current and the previous hypothesis goes below
a fixed threshold 𝜖 (cf. Figure 1).

Next, we describe the update procedure. To ease the ex-
position, we fix the set of states 𝑆, labels 𝐿, and actions 𝐴

and we implicitly refer to the current hypothesis as the pair
H = 〈], {𝜏𝑎}𝑎∈𝐴〉. We define the forward and the backward
functions 𝛼𝑜, 𝛽𝑜 : 𝑆 × {1 . . 𝑇} → [0, 1] for an observation
sequence 𝑜 as

𝛼𝑜 (𝑠, 𝑡) = 𝑃𝑟H [𝑌1:𝑡 = ℓ1 . . ℓ𝑡 , 𝑋𝑡 = 𝑠 |𝐴1:𝑡−1 = 𝑎1 . . 𝑎𝑡−1] , and

𝛽𝑜 (𝑠, 𝑡) = 𝑃𝑟H [𝑌𝑡+1:𝑇 = ℓ𝑡+1 . . ℓ𝑇 |𝑋𝑡 = 𝑠, 𝐴𝑡:𝑇 −1 = 𝑎𝑡 . . 𝑎𝑇 −1] .

These can be calculated using dynamic programming accord-
ing to the following recurrences

𝛼𝑜 (𝑠, 𝑡) =

](ℓ1, 𝑠) if 𝑡 = 1∑︁
𝑠′∈𝑆

𝛼(𝑠′, 𝑡 − 1) 𝜏𝑎𝑡−1 (𝑠′) (ℓ𝑡 , 𝑠) if 1< 𝑡 ≤𝑇 (1)

𝛽𝑜 (𝑠, 𝑡) =

1 if 𝑡 = 𝑇∑︁
𝑠′∈𝑆

𝛽(𝑠′, 𝑡 + 1) 𝜏𝑎𝑡 (𝑠) (ℓ𝑡+1, 𝑠
′) if 1 ≤ 𝑡 < 𝑇 (2)

Next, we define 𝛾𝑜 : 𝑆 × {1, . . , 𝑇} → [0, 1] and the action-
indexed family of functions b𝑎𝑜 : 𝑆 × {1, . . , 𝑇 − 1} × 𝐿 × 𝑆 →
[0, 1] for 𝑎 ∈ 𝐴 as

𝛾𝑜 (𝑠, 𝑡) = 𝑃𝑟H [𝑋𝑡 = 𝑠 |𝑂𝑇 = 𝑜] , (3)

b𝑎𝑜 (𝑠, 𝑡) (ℓ, 𝑠′) = 𝑃𝑟H [𝑋𝑡 = 𝑠,𝑌𝑡+1 = ℓ, 𝑋𝑡+1 = 𝑠′ |𝑂𝑇 = 𝑜] .

The above are related to 𝛼𝑜 and 𝛽𝑜 as follows

𝛾𝑜 (𝑠, 𝑡) =
𝛼𝑜 (𝑠, 𝑡) · 𝛽𝑜 (𝑠, 𝑡)∑

𝑠′∈𝑆 𝛼𝑜 (𝑠′, 𝑡) · 𝛽𝑜 (𝑠′, 𝑡)

b𝑎𝑜 (𝑠, 𝑡) (ℓ, 𝑠′) = 1𝑎𝑡 (𝑡)1ℓ𝑡 (ℓ)
𝛼𝑜 (𝑠, 𝑡)𝜏𝑎 (𝑠) (ℓ, 𝑠′)𝛽𝑜 (𝑠′, 𝑡 + 1)∑

𝑢∈𝑆 𝛼𝑜 (𝑢, 𝑡) · 𝛽𝑜 (𝑢, 𝑡)

Given the current hypothesis H = 〈𝑆,], {𝜏𝑎}𝑎∈𝐴〉 of
the model and a multiset O of i.i.d. observation se-
quences 𝑜1, . . . , 𝑜𝑅 ∈ Obsfin where the 𝑟-th observation

sequence is 𝑜𝑟 = ℓ𝑟1 , 𝑎
𝑟
1 , . . . , ℓ

𝑟
𝑇𝑟−1, 𝑎

𝑟
𝑇𝑟−1, ℓ

𝑟
𝑇𝑟

, the procedure
UPDATE(H ,O, 𝛼, 𝛽) updates] and {𝜏𝑎}𝑎∈𝐴 as follows

](ℓ, 𝑠) =
∑𝑅

𝑟=1 1ℓ𝑟1 (ℓ) · 𝛾𝑜𝑟 (𝑠, 1)
𝑅

𝜏𝑎 (𝑠) (ℓ, 𝑠′) =
∑𝑅

𝑟=1
∑𝑇𝑟

𝑡=1 b
𝑎
𝑜𝑟 (𝑠, 𝑡) (ℓ, 𝑠′)∑𝑅

𝑟=1
∑𝑇𝑟

𝑡=1 1𝑎 (𝑎𝑟𝑡) · 𝛾𝑜𝑟 (𝑠, 𝑡)
.

Remark 3.1: Depending on the specific scheduler employed
to sample the observations one may incur in the situation
where

∑𝑅
𝑟=1

∑𝑇𝑟
𝑡=1 𝛾𝑜𝑟 (𝑠, 𝑡) = 0, indicating that the state 𝑠 does

not play a role in the observed dynamics. In this case the up-
date procedure leaves the distributions {𝜏𝑎 (𝑠)}𝑎∈𝐴 unchanged.

The above described procedure is easily adapted to Markov
chains, which are MDPs with a single action. Hereafter we
use MC-BW to explicitly refer to such adaptation.

A. Experimental Results

I this section we compare the quality of the models learned
using MC-BW and MDP-BW respectively against the cur-
rent state-of-the-art passive-learning tools for Markov chains
and Markov decision processes, namely ALERGIA [4] and
IOALERGIA [8]. Before we proceed, we briefly recall how
ALERGIA and IOALERGIA work. Both algorithms start from
a maximal tree-shaped probabilistic automaton representing
the training set O, which is iteratively reduced by recursive
merging operations among compatible states. Compatibility
among states is determined based on the Hoeffding test
parametric on a given confidence value 𝛼 ∈ (0, 1).

Remarkably, these approaches are very efficient and enjoy
convergence properties. However, IOALERGIA converges to
the original (canonical) model M only if it is deterministic,
i.e., for all 𝑠, 𝑠′, 𝑠′′ ∈ 𝑆, ℓ ∈ 𝐿, and 𝑎 ∈ 𝐴, if 𝜏𝑎 (𝑠) (ℓ, 𝑠′) > 0
and 𝜏𝑎 (𝑠) (ℓ, 𝑠′′) > 0, then 𝑠′ = 𝑠′′. Hence each observation
sequence is assumed to be emitted by a unique path.

As a consequence, if the MDP under learning is not deter-
ministic IOALERGIA can only learn a deterministic approxi-
mation of the model which has often a larger state space.

Due to the nature of the model construction, ALERGIA and
IOALERGIA do not require (nor explicitly allow) the user
to choose the size of the learned model (i.e. the number of
states) upfront. However, it can be tuned by choosing the input
confidence value of 𝛼.

MC-BW vs. ALERGIA: For experimental comparison
between MC-BW and ALERGIA, we fixed a training set O and
a test set T respectively consisting of 104 and 105 observation
sequences of length 5 generated by the chain in Figure 2. The
size of the test set is 10 times bigger than that of the training
set because we are interested in measuring to what extent the
learning procedures are able to generalise w.r.t. a relatively
small training set. First we have run MC-BW starting from a
random initial hypothesis with 𝑛 = 7 . . 15 states, then we have
run ALERGIA with an input value of 𝛼 chosen to match the
size of the learned model to 𝑛.

Table Ia summarises the results of our experiments in terms
of the quality of the learned models. The values reported

|𝑆 | ALERGIA MC-BW
𝛼 ln 𝐿 on O ln 𝐿 on T KL div. ln 𝐿 on O ln 𝐿 on T KL div.

7 2.09e-201 −3.968 −4.163 1.256 −2.597 −2.66 0.086
8 7.28e-160 −3.836 −4.239 1.025 −2.595 -2.651 0.086
9 2.93e-100 −3.257 −3.432 0.607 −2.597 −2.659 0.086
10 7.14e-104 −2.993 −3.133 0.376 −2.587 −2.654 0.095
11 5.66e-75 −3.076 −3.231 0.29 −2.693 −2.808 0.001
12 2.87e-44 −2.701 −2.804 0.002 −2.699 −2.807 0.001
13 0.01 −2.701 −2.803 0.002 −2.54 −2.72 0.155
14 0.5 −2.693 -2.8 0.001 −2.586 −2.657 0.095
15 0.9 −2.694 −2.808 0.001 −2.533 −2.723 0.161

(a) Comparison of Alergia and MC-BW on the REBER grammar from [20].

ln 𝐿 on O ln 𝐿 on T KL div.
True model −4.171 −4.262 0
MDP-BW −4.899 −4.989 0.333

IOALERGIA −13.83 − −

(b) Comparison of IOALERGIA and MDP-BW on an
adaptation of the Grid World model from [9].

TABLE I
COMPARATIVE ANALYSIS OF THE BAUM-WELCH ALGORITHM VS ALERGIA

𝑠1 𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

𝑠7

1start

1
B

0.5
T

0.5

P

0.4
X

0.3
V

0.5
S

0.5
V

0.5

X

0.5
P

0.6 S

0.7 T

1.0

E

Fig. 2. The REBER grammar from [20]

in the table correspond to the loglikelihood of O (resp. T)
divided by |O| (resp. |T |) and the Kullback-Leibler divergence
relative to T . We can see that MC-BW achieves better
quality performace with fewer states compared with ALERGIA.
Interestingly, we observe an increased size of the model does
not necessarily correspond to a quality improvement. This
phenomenon may have two plausible explanations: (i) having
too many states leads the learning procedure to overfit the
training set; (ii) or only a portion of the model gets updated
by the procedure, while the remaining portion of the model is
left almost identical to the starting hypothesis.

MDP-BW vs. IOALERGIA: By using the same method-
ology, we compared MDP-BW against IOALERGIA [8].
Here the model we are learning is a smaller variant of the grid
world introduced in [9] (cf. Figure 3). A robot is moving in this
grid, starting from the middle cell. The actions are the four
directions —nord, east, south, and west— and the observed
labels represent different terrains. Depending on target terrain
the robot may slip and change direction, e.g. move south west
instead of south. By construction, the model is a deterministic
MDP thus, in the big sample limit, IOALERGIA can learn it.

For the comparison, we used a training set O and a test
set T consisting respectively of 103 and 102 sequences of 10
length. With 𝛼 = 0.05, IOALERGIA produced a model with
10 states. We then run MDP-BW staring from a randomly
generated initial hypothesis with 9 states. Table Ib summarises
the results of the comparison. On the training set, the model
learned by IOALERGIA scores lower log-likelihood value than
the model learned by MDP-BW. Notably, the test set had

a number of observations that could not be generated by
the model produced with IOALERGIA. In contrast, the MDP
learned with MDP-BW was able to generalise better from the
training set, achieving a log-likelihood value on T comparably
similar to the one measured on original grid-world model. This
results show us that for small training sets, MDP-BW seems to
attain more accurate models than IOALERGIA, which requires
big training sets to achieve good results.

However, the price of the accuracy of MDP-BW is payed in
terms of efficiency: in all experiments IOALERGIA run orders
of magnitude faster than MDP-BW. This is not surprising,
because IOALERGIA has a run-time complexity that grow
linearly in the size of the data set.

Fig. 3. The Small Grid World Model.

IV. ACTIVE LEARNING OF MARKOV DECISION PROCESSES

The MDP-BW algorithm is a passive learning method: it
assumes no interaction with the system, which has to be
learned from a fixed set of observations. In situations where
one can actively query the system to collect training data, one
can think of employing querying strategies to produce new
examples that are most informative w.r.t. the systems nonde-
terministic behaviour. In this way, one can learn qualitatively
better models compared to the passive learning approach while
collecting a considerably smaller amount of observations.

Let H = 〈𝑆, 𝐴,], {𝜏𝑎}𝑎∈𝐴〉 and O = {𝑜1, . . . , 𝑜𝑅} be
respectively the current hypothesis and the current training
set. The active learning procedure iteratively updates H and
O by performing the following steps:

1) devise an observation-based scheduler from O and H ;

Passive Learning

Active Learning

50 100 150 200 250

-1.04

-1.02

-1.00

-0.98

-0.96

-0.94

-0.92

Number of Sequences

Lo
g-
Li
ke
lih
oo
d

(a) Street crossing model: log-likelihood graphs relative
to a test set of of 200 sequences of fixed length 12.

Passive Learning

Active Learning

300 400 500 600 700 800 900 1000

-4.44

-4.42

-4.40

-4.38

-4.36

Number of Sequences

Lo
g-
Li
ke
lih
oo
d

(b) Small grid world model: log-likelihood graphs relative a test set of of 200 sequences of
length 𝑇 ∼ Geo(0.8) .

Fig. 4. Comparison between the passive learning and active learning procedures based on the MDP-BW algorithm.

2) sample new observation sequences using the above men-
tioned scheduler, adding them to O; and

3) update H based on the new data using MDP-BW.
These steps are repeated until a given sampling budget has
been exceeded or no further scrutiny of the system is deemed
necessary. Hereafter, we detail how each step is implemented.

We start by computing the matrix 𝑀 = (𝑚𝑠𝑎)𝑠∈𝑆,𝑎∈𝐴 where
𝑚𝑠𝑎 is the expected number of times the action 𝑎 has been
chosen from 𝑠, that is computed as follows

𝑚𝑠𝑎 =
∑𝑅

𝑟=1
∑ |𝑜𝑟 |

𝑡=1 1𝑎 (𝑎𝑟𝑡) 𝛾𝑜𝑟 (𝑠, 𝑡) , (4)

then, we define the memoryless scheduler 𝜎𝑀 : 𝑆 → D(𝐴) as

𝜎𝑀 (𝑠) (𝑎) = 1 − (𝑚𝑠𝑎/
∑

𝑎′∈𝐴𝑚𝑠𝑎′) . (5)

Intuitively, given the system is in state 𝑠 ∈ 𝑆, the above
scheduler chooses an action 𝑎 ∈ 𝐴 with a probability that is
opposite to that observed in O. Since the current state of the
system is hidden, when sampling we use a belief state instead.
This corresponds to employ the observation-based scheduler
𝜎∗
𝑀

: Obsfin → D(𝐴) defined as follows. For an observation
𝑜 = (ℓ1, 𝑎1) · · · (ℓ𝑡−1, 𝑎𝑡−1)ℓ𝑡 ∈ Obsfin and an action 𝑎 ∈ 𝐴,

𝜎∗
𝑀 (𝑜) (𝑎) = ∑

𝑠∈𝑆 𝑃𝑟
H [𝑋𝑡 = 𝑠 |𝑂𝑡 = 𝑜] · 𝜎𝑀 (𝑠) (𝑎)

=
∑

𝑠∈𝑆 𝛾𝑜 (𝑠, 𝑡) 𝜎𝑀 (𝑠) (𝑎) . (6)

Intuitively, the above scheduler works as follows. Having
observed 𝑜, we believe system is in state 𝑠 ∈ 𝑆 with probability
𝑃𝑟H [𝑋𝑡 = 𝑠 |𝑂𝑡 = 𝑜]; consequently, 𝜎∗

𝑀
chooses the action

𝑎 ∈ 𝐴 with probability 𝜎𝑀 (𝑠) (𝑎).
The algorithm in Fig. 5 describes how we actively sample

an observation sequence of length 𝑇 ∈ N emitted by a partially
observable MDP M by using the scheduler 𝜎∗

𝑀
of Eq. (6).

ACTIVESAMPLING keeps track and updates at each step the
matrix 𝑀 and the current forward distribution 𝛼(·, 𝑡) ∈ D(𝑆).
These are respectively used to compute the current belief state
𝛾(·, 𝑡) ∈ D(𝑆) (cf. Eq. (3)) and the memoryless scheduler
𝜎𝑀 (cf. Eq. (5)), which are used in line 6. After observing
the an initial label ℓ1 from the system M, the initial forward
distribution 𝛼(·, 1) is computed (lines 3–4). Then, for each
time-step 𝑡 from 1 to 𝑇 − 1, an action 𝑎𝑡 ∈ 𝐴 is sampled

ACTIVESAMPLING(M,H = 〈𝑆,], {𝜏𝑎}𝑎∈𝐴〉,O, 𝑇 ∈ N)
1 Initialise 𝑀 = (𝑚𝑠𝑎)𝑠∈𝑆,𝑎∈𝐴 as Eq. (4)
2 ℓ1 = INIT(M) // initialise the system
3 for each 𝑠 ∈ 𝑆

4 𝛼(𝑠, 1) =](ℓ1, 𝑠)
5 for 𝑡 = 1 to 𝑇 − 1
6 Sample 𝑎𝑡 ∈ 𝐴 according to

∑
𝑠∈𝑆

𝛼(𝑠,𝑡)∑
𝑠′∈𝑆 𝛼(𝑠′,𝑡)𝜎𝑀 (𝑠)

7 ℓ𝑡+1 = OBSERVE-LABEL(M, 𝑎𝑡)
8 for each 𝑠 ∈ 𝑆

9 𝑚𝑠𝑎𝑡 = 𝑚𝑠𝑎𝑡 + 𝛼(𝑠, 𝑡)/∑𝑠′∈𝑆 𝛼(𝑠′, 𝑡)
10 𝛼(𝑠, 𝑡 + 1) = ∑

𝑠′∈𝑆 𝜏𝑎𝑡 (𝑠′) (ℓ𝑡+1, 𝑠) · 𝛼(𝑠′, 𝑡)
11 // Return the entire observation sequence
12 return (ℓ1, 𝑎1) · · · (ℓ𝑇 −1, 𝑎𝑇 −1)ℓ𝑇

Fig. 5. Active Sampling Strategy

according to 𝜎∗
𝑀

, and used to observe the next label ℓ𝑡+1
emitted by M (line 7). The forward distribution 𝛼(·, 𝑡 + 1)
and the matrix 𝑀 are then updated (line 8–10) before moving
to the next time-step. The update of the forward probabilities
follows Eq. (1), while the update of the column vector 𝑀𝑎𝑡

follows Eq. (4).

A. Experimental Results

In this section we present an empirical analysis of the active
sampling strategy. We will use two case study models: the
small grid world model from previous section (see Fig. 3),
and the street crossing model (depicted in Fig. 6). The former
model represents an agent trying to avoid a stranger bumping
into her. Here she can choose among two actions: stay on
the current side of the sidewalk or move to the other side.
The agent and the stranger make their move independently at
the same time; in particular, when the two are not in front
each other the stranger, proceeds forward. After performing
the action, the agent observes if the stranger is on the left or
the right side of the street. If the two end up in the same side
they bump into each other, otherwise they avoid each other.
The stranger changes side with probability 𝑝 ∈ (0, 1).

𝑠1 𝑠2

𝑠3

hit ok

stay

move

stay

move
1start

𝑝 left

1 − 𝑝

right 1 − 𝑝

right

𝑝 left

𝑝right

1 − 𝑝

left1 − 𝑝

left

𝑝right

move
1 bump

stay
1 avoid

stay
1 avoid

move
1 avoid

stay
1bump

move
1bump

Fig. 6. The Street crossing model

We compare the active procedure against the passive one
and show how the learning accuracy of the former compares
to the latter with the size of the training set. The experiments
have been performed as follows. Starting from the same initial
hypothesis —learned with MDP-BW from a small data set—
we incrementally grew the data set bigger respectively using
the active sampling strategy and a sampling strategy based on a
memoryless uniformly distributed selection of actions. For the
street crossing model the initial hypothesis was learned from
a data set of 50 sequences of length 12; then we performed
200 active learning iterations. Fig. 4a shows the graph of the
mean log-likelihood paired with standard error bars measured
from a number of re-run of the experiment relative to test set
of 200 sequences each of length 12.

For the small grid world model the initial hypothesis was
learned from 250 observation sequences of length 𝑇 distributed
according to a geometric distribution with success probability
𝑝 = 0.8, that is 𝑇 ∼ Geo(0.8); then we performed 750 active
learning iterations by sampling new observations of length 𝑇 ∼
Geo(0.8). Analogously to the first case study, the results of this
experiment are summarised in Fig. 4b. The graph shows that
the passive learning approach has a more pronounced tendency
to overfit the data set than the active learning approach.

Overall, the graphs in Fig. 4 show that the active learning
approach provides better approximations than the passive
approach. Another interpretation is that the proposed active
learning is able to obtain the same level of accuracy than the
passive learning approach with a smaller data set. Notably, the
graphs show also that the standard error for the active learning
method is smaller than the one measured for the passive
learning approach. This indicates that our active learning
approach is more stable than the passive approach.

Active MDP-BW vs 𝐿∗
MDP: We conclude the experiment

section by comparing our active learning method against the
𝐿∗

MDP algorithm [9] for learning deterministic MDPs. We recall
that 𝐿∗

MDP actively refines its current hypothesis as long as the
teacher can provide new counterexamples. The implementation
of the teacher in the 𝐿∗

MDP algorithm is done both by checking
the conformance and the structure of the hypothesis w.r.t the
data set.

For the comparison we replicated the same experiment

Fig. 7. The Grid World Model from [9].

true 𝐿∗MDP IOALERGIA A-MDP-BW
overall # of labels - 3101959 3103607 23781

of observation traces - 391530 387746 1200
|𝑆 | (# of states) 35 35 21 19

bismilarity distance 𝛿0.9 0 0.144 0.524 0.364
Pmax (𝐹<12 (goal)) 0.962 0.965 0.230 0.978

Pmax (¬G 𝑈≤14 (goal)) 0.65 0.646 0.158 0.466
Pmax (¬S 𝑈≤16 (goal)) 0.691 0.676 0.180 0.806

TABLE II
RESULTS FOR LEARNING THE GRID WORLD MODEL.

performed in [9] for comparing IOALERGIA with 𝐿∗
MDP when

learning the grid world model depicted in Fig. 7.
Our model was learned using the active learning approach

starting from a (deterministic) initial model with 19 states,
learned from a small dataset of 200 sequences. The length
𝑇 of each sampled sequence is distributed according to a
geometric distribution shifted by 10 with success probability
𝑝 = 0.9, that is, 𝑇 ∼ 10 + Geo(0.9)1. At each active learning
iteration we sampled two new sequences, and we stopped after
collecting 1200 observation traces. Table II shows the results
of the experiment. As done in [9] we compared the models
with respect to the bisimilarity distance2 with discount factor
_ = 0.9: the model learned with our active learning approach,
scores slightly better than IOALERGIA but worse than 𝐿∗

MDP.
Nevertheless, the results of the three model-checking queries
performed on our model are close to the true one: the absolute
error from the true values is bounded by 0.184. Overall, 𝐿∗

MDP

scores better than our active learning approach. This is due
to a number of reasons: (i) the learned model is smaller
than the canonical true model and (ii) it was learned from
a significantly smaller data set; finally, (iii) the active learning
approach is not sensitive to structural counterexamples as the
𝐿∗

MDP algorithm is. Indeed, when the algorithm encounters a
new observation which has probability zero of being generated
by the current hypothesis, also the next hypothesis won’t be
able to generate it. This aspect in particular needs particular
attention when learning deterministic models or in general

1Specifically, 𝑃 (𝑇 = 10 + 𝑘) = (1 − 𝑝)𝑘−1𝑝 for 𝑘 ∈ N>0.
2To compute the distance, we used the MDPDist library [21] adapted to

labelled MDPs.

when some observation traces can be emitted only by a single
path in the hypothesis model.

V. CONCLUSIONS AND FUTURE WORK

In this paper we revisited the classic Baum-Welch algorithm
for learning models parameters of nondeterministic MDPs and
Markov chains from a set of observations. Compared with
state-of-the-art (passive) learning algorithms like ALERGIA
and IOALERGIA, the MDP-BW procedure has a higher run-
time complexity. However, experiments show that MDP-BW is
able to learn models that reflect more accurately the behaviours
of the observed system. This aspect is more pronounced when
learning MDPs from a relatively small set of observations.

Learning model parameters for MDPs typically requires
large data sets, especially when the system under learning
exhibits a high degree of nondeterminism. To cope with this
issue, we proposed a model-based active learning sampling
strategy which has three main advantages: (a) it is simple to
implement and can be seamlessly integrated into small low
power embedded systems; (b) it does not introduce additional
overhead with respect to the model update procedure; (c) it
collects a diverse and well-spread variety of observations,
that better represent the nondeterministic behaviours of the
system under learning. Experimental results show that the ac-
tive procedure strategy outperforms the corresponding passive
learning variant in terms of accuracy relative to the size of the
data set. This makes our active learning procedure an effective
solution when one has the possibility to have limited amount
of interactions with the system under learning.

A weakness of our active learning procedure is the fact that
is it not sensitive to structural counterexamples. As future work
we intend address this issue.

Another interesting research direction consists in generalis-
ing the active learning procedure for learning model param-
eters of stochastic two-player games, allowing one to learn
systems that operate in an unknown (adversarial) environment
by actively interacting with both players.

REFERENCES

[1] M. Z. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0:
Verification of probabilistic real-time systems,” in Computer Aided
Verification - 23rd International Conference, CAV 2011, Snowbird,
UT, USA, July 14-20, 2011. Proceedings, ser. Lecture Notes
in Computer Science, G. Gopalakrishnan and S. Qadeer, Eds.,
vol. 6806. Springer, 2011, pp. 585–591. [Online]. Available:
https://doi.org/10.1007/978-3-642-22110-1_47

[2] C. Dehnert, S. Junges, J. Katoen, and M. Volk, “A storm is
coming: A modern probabilistic model checker,” in Computer Aided
Verification - 29th International Conference, CAV 2017, Heidelberg,
Germany, July 24-28, 2017, Proceedings, Part II, ser. Lecture
Notes in Computer Science, R. Majumdar and V. Kuncak, Eds.,
vol. 10427. Springer, 2017, pp. 592–600. [Online]. Available:
https://doi.org/10.1007/978-3-319-63390-9_31

[3] A. David, P. G. Jensen, K. G. Larsen, M. Mikucionis, and J. H.
Taankvist, “Uppaal stratego,” in Tools and Algorithms for the
Construction and Analysis of Systems - 21st International Conference,
TACAS 2015, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April
11-18, 2015. Proceedings, ser. Lecture Notes in Computer Science,
C. Baier and C. Tinelli, Eds., vol. 9035. Springer, 2015, pp. 206–211.
[Online]. Available: https://doi.org/10.1007/978-3-662-46681-0_16

[4] R. C. Carrasco and J. Oncina, “Learning stochastic regular grammars
by means of a state merging method,” in Grammatical Inference and
Applications, Second International Colloquium, ICGI-94, ser. Lecture
Notes in Computer Science, R. C. Carrasco and J. Oncina, Eds., vol.
862. Springer, 1994, pp. 139–152.

[5] ——, “Learning deterministic regular grammars from stochastic samples
in polynomial time,” RAIRO – Theoretical Informatics and Applications
(RAIRO: ITA), vol. 33, no. 1, pp. 1–20, 1999.

[6] H. Mao, Y. Chen, M. Jaeger, T. D. Nielsen, K. G. Larsen, and
B. Nielsen, “Learning probabilistic automata for model checking,” in
Eighth International Conference on Quantitative Evaluation of Systems,
QEST 2011. IEEE Computer Society, 2011, pp. 111–120.

[7] Y. Chen and T. D. Nielsen, “Active learning of markov decision
processes for system verification,” in 11th International Conference on
Machine Learning and Applications, ICMLA, Boca Raton, FL, USA,
December 12-15, 2012. Volume 2. IEEE, 2012, pp. 289–294. [Online].
Available: https://doi.org/10.1109/ICMLA.2012.158

[8] H. Mao, Y. Chen, M. Jaeger, T. D. Nielsen, K. G. Larsen, and B. Nielsen,
“Learning Deterministic Probabilistic Automata from a Model Checking
Perspective,” Machine Learning, vol. 105, no. 2, pp. 255–299, 2016.

[9] M. Tappler, B. K. Aichernig, G. Bacci, M. Eichlseder, and K. G. Larsen,
“𝐿∗-Based Learning of Markov Decision Processes,” in Formal Methods
- The Next 30 Years - Third World Congress, FM 2019, ser. Lecture Notes
in Computer Science, M. H. ter Beek, A. McIver, and J. N. Oliveira,
Eds., vol. 11800. Springer, 2019, pp. 651–669.

[10] L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, Feb 1989.

[11] N. M. L. A. P. Dempster and D. B. Rubin, “Maximum Likelihood from
Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical
Society, vol. 39, no. 1, pp. 1–38, 1977.

[12] K. Kalajdzic, C. Jégourel, A. Lukina, E. Bartocci, A. Legay, S. A.
Smolka, and R. Grosu, “Feedback control for statistical model checking
of cyber-physical systems,” in Leveraging Applications of Formal
Methods, Verification and Validation: Foundational Techniques - 7th
International Symposium, ISoLA 2016, Imperial, Corfu, Greece, October
10-14, 2016, Proceedings, Part I, ser. Lecture Notes in Computer
Science, T. Margaria and B. Steffen, Eds., vol. 9952, 2016, pp. 46–61.
[Online]. Available: https://doi.org/10.1007/978-3-319-47166-2_4

[13] M. Benedikt, R. Lenhardt, and J. Worrell, “LTL model checking of
interval markov chains,” in Tools and Algorithms for the Construction
and Analysis of Systems - 19th International Conference, TACAS 2013,
Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.
Proceedings, ser. Lecture Notes in Computer Science, N. Piterman and
S. A. Smolka, Eds., vol. 7795. Springer, 2013, pp. 32–46. [Online].
Available: https://doi.org/10.1007/978-3-642-36742-7_3

[14] G. Bacci, G. Bacci, K. G. Larsen, and R. Mardare, “On the
metric-based approximate minimization of markov chains,” J. Log.
Algebraic Methods Program., vol. 100, pp. 36–56, 2018. [Online].
Available: https://doi.org/10.1016/j.jlamp.2018.05.006

[15] D. Angluin, “Learning regular sets from queries and counterexamples,”
Information and Computation, vol. 75, no. 2, pp. 87–106, 1987.

[16] B. Steffen, F. Howar, and M. Merten, “Introduction to active automata
learning from a practical perspective,” in Formal Methods for Eternal
Networked Software Systems - 11th International School on Formal
Methods for the Design of Computer, Communication and Software Sys-
tems, SFM 2011, ser. Lecture Notes in Computer Science, M. Bernardo
and V. Issarny, Eds., vol. 6659. Springer, 2011, pp. 256–296.

[17] M. Isberner, F. Howar, and B. Steffen, “The TTT algorithm: A
redundancy-free approach to active automata learning,” in Runtime
Verification - 5th International Conference, RV 2014, ser. Lecture Notes
in Computer Science, B. Bonakdarpour and S. A. Smolka, Eds., vol.
8734. Springer, 2014, pp. 307–322.

[18] S. Cassel, F. Howar, B. Jonsson, and B. Steffen, “Active learning for
extended finite state machines,” Formal Aspects of Computing, vol. 28,
no. 2, pp. 233–263, 2016.

[19] C. Baier and J. Katoen, Principles of Model Checking. MIT Press,
2008.

[20] A. S. Reber, “Implicit learning of artificial grammars,” Journal of Verbal
Learning and Verbal Behavior, vol. 6, pp. 855–863, Dec 1967.

[21] G. Bacci, G. Bacci, K. G. Larsen, and R. Mardare, “The bisimdist
library: Efficient computation of bisimilarity distances for markovian

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1109/ICMLA.2012.158
https://doi.org/10.1007/978-3-319-47166-2_4
https://doi.org/10.1007/978-3-642-36742-7_3
https://doi.org/10.1016/j.jlamp.2018.05.006

models,” in QEST, ser. Lecture Notes in Computer Science, vol. 8054.
Springer, 2013, pp. 278–281.

	I Introduction
	II Preliminaries and Notation
	II-A Markov decision processes and schedulers

	III Learning MPDs using Baum-Welch algorithm
	III-A Experimental Results

	IV Active Learning of Markov Decision Processes
	IV-A Experimental Results

	V Conclusions and Future Work
	References

